Wzór Herona pozwala obliczyć pole trójkąta, jeżeli znane są długości jego boków (a, b i c)
Wzór Herona ma postać:
\(P = \sqrt{p(p - a)(p - b)(p - c)}\)
\(p = \dfrac{a + b + c}{2}\)
Wyjaśnienie symboli:
\(P\) - pole trójkąta
\(a, b, c\) - długości boków trójkąta
\(p\) - połowa obwodu trójkąta
Pole powierzchni trójkąta dowolnego
Wzór Herona wzór
Oprócz - wzór na wzór herona może Ci się przydać
Zobacz również
- Objętość ostrosłupa ściętego - wzór
- Logarytm - wzór
- Pole powierzchni części wspólnej...
- Twierdzenie Talesa - wzór
- Rozdzielność mnożenia - wzór
- Prawa rachunku zdań - wzór
- Permutacja z powtórzeniami - wzór
- Całkowanie przez części - wzór
- Ekstremum funkcji (minimum, maksimum)...
- Objętość beczki - wzór
- Pole powierzchni pasa kulistego - wzór
- Wyznacznik macierzy 4x4 - wzór
- Logarytm pierwiastka - wzór
- Równość liczb zespolonych (urojonych)...
- Przekątna kwadratu - wzór
Wzór Herona - jak stosować w praktyce?