Wzory Viete'a mają postać:
\(x_1 + x_2 = \dfrac{-b}{a}\)
\(x_1 \cdot x_2 = \dfrac{c}{a}\)
Między pierwiastkami \(x_1\) i \(x_2\) równania kwadratowego
\(ax^2 + b x + c = 0\), gdzie \( a \neq 0 \: i \: \Delta \geq 0\)
a jego współczynnikami liczbowym zachodzą związki nazwane wzorami Viete'a
Wzory Viete'a wzór
Przydatne kalkulatory i narzędzia
Oprócz - wzór na wzory viete'a może Ci się przydać
Zobacz również
- Objętość ostrosłupa ściętego - wzór
- Logarytm - wzór
- Pole powierzchni części wspólnej...
- Twierdzenie Talesa - wzór
- Rozdzielność mnożenia - wzór
- Prawa rachunku zdań - wzór
- Permutacja z powtórzeniami - wzór
- Całkowanie przez części - wzór
- Ekstremum funkcji (minimum, maksimum)...
- Objętość beczki - wzór
- Pole powierzchni pasa kulistego - wzór
- Wyznacznik macierzy 4x4 - wzór
- Logarytm pierwiastka - wzór
- Równość liczb zespolonych (urojonych)...
- Przekątna kwadratu - wzór
Wzory Viete'a - jak stosować w praktyce?
A=-2 B=-8 C=-3